Inferring Animal Densities from Tracking Data Using Markov Chains
نویسندگان
چکیده
The distributions and relative densities of species are keys to ecology. Large amounts of tracking data are being collected on a wide variety of animal species using several methods, especially electronic tags that record location. These tracking data are effectively used for many purposes, but generally provide biased measures of distribution, because the starts of the tracks are not randomly distributed among the locations used by the animals. We introduce a simple Markov-chain method that produces unbiased measures of relative density from tracking data. The density estimates can be over a geographical grid, and/or relative to environmental measures. The method assumes that the tracked animals are a random subset of the population in respect to how they move through the habitat cells, and that the movements of the animals among the habitat cells form a time-homogenous Markov chain. We illustrate the method using simulated data as well as real data on the movements of sperm whales. The simulations illustrate the bias introduced when the initial tracking locations are not randomly distributed, as well as the lack of bias when the Markov method is used. We believe that this method will be important in giving unbiased estimates of density from the growing corpus of animal tracking data.
منابع مشابه
Empirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کاملInferring Social Structure of Animal Groups From Tracking Data
Inferring the social structures of animal groups from their observed behavior is a non-trivial task usually handled by direct observation. Recent advances in sensing and tracking technology have enabled the collection of dense spatial data over long periods of time automatically. The qualitative differences between sparse hand-coded data and dense tracking data necessitate a new approach to inf...
متن کاملPredicting CpG Islands and Their Relationship with Genomic Feature in Cattle by Hidden Markov Model Algorithm
Cattle supply an important source of nutrition for humans in the world. CpG islands (CGIs) are very important and useful, as they carry functionally relevant epigenetic loci for whole genome studies. As a matter of fact, there have been no formal analyses of CGIs at the DNA sequence level in cattle genomes and therefore this study was carried out to fill the gap. We used hidden markov model alg...
متن کاملInferring Mixtures of Markov Chains
We define the problem of inferring a “mixture of Markov chains” based on observing a stream of interleaved outputs from these chains. We show a sharp characterization of the inference process. The problems we consider also has applications such as gene finding, intrusion detection, etc., and more generally in analyzing interleaved sequences.
متن کاملBayesian Phylogenetic Inference from Animal Mitochondrial Genome Arrangements
The determination of evolutionary relationships is a fundamental problem in evolutionary biology. Genome arrangement data is potentially more informative than DNA sequence data for inferring evolutionary relationships among distantly related taxa. We describe a Bayesian framework for phylogenetic inference from mitochondrial genome arrangement data using Markov chain Monte Carlo methods. We app...
متن کامل